Introducción a la Bioinformática Sequencing Methods Sequence Assembly Short Read Mapping

Hamiltonian cycle Visit each vertex once

Fernán Agüero

Instituto de Investigaciones Biotecnológicas Universidad Nacional de General San Martín

fernan@iib.unsam.edu.ar

Next-gen sequencing

Fernán Agüero

Sanger sequencing (old technology)

- Clonar el DNA.
- Generar una escalera de moléculas *etiquetadas* (con fluoróforos) o marcadas radioactivamente
- Cada fragment difiere en 1 nucleótido del proximo
- Separar la mezcla en alguna matriz (electroforesis).
- Detectar cada fragmento
- Interpretar los picos de emisión como una cadena de bases (DNA).
- Se generan cadenas de 500 a 1,000 bases de longitud
- 1 secuenciador genera ~ 57,000 nucleotidos/corrida
- Ensamblar las cadenas en un todo

New sequencing technologies

- Breakthrough
 - Polymerase colonies *polony / polonies*
 - In situ localized amplification and contact replication of many individual DNA molecules. Mitra RD, Church GM. (1999) Nucleic Acids Res. 27: e34.
 - Se elimina la necesidad de clonar moléculas en *E. coli*
 - Multiplex-amplification, manteniendo agrupamiento físico de amplicones idénticos
 - Se amplifican y clonan moléculas en el tubo
 - Emulsion-PCR (beads)
 - In situ polonies (matrix)

New sequencing technologies: Illumina / solexa

- Construcción de bibliotecas
- Attachment al soporte

• Amplificación de las colonias

New sequencing technologies: Illumina / solexa

• Reacciones de extensión + lectura del slide usando laser

Sequence read over multiple chemistry cycles Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at a time.

New sequencing technologies: Illumina / solexa

• Base calling – Asignación de bases en la secuencia

New sequencing technologies: 454

• Roche 454

- Also known as *pyrosequencing*
- 500 million bp/run
- 10 hr/run
- 400-500 bp/read & > 1 M reads

а

DNA library preparation 4.5 hours Ligation Genome fragmented by nebulization Selection No cloning; no colony picking (isolate AB fragments sstDNA library created only) with adaptors A/B fragments selected using avidin-biotin purification sstDNA library **gDNA**

Fernán Agüero

10

• PCR en emulsión

b

Emulsion PCR

8 hours

Anneal sstDNA to an excess of DNA capture beads

sstDNA library -

Emulsify beads and PCR reagents in water-in-oil microreactors Clonal amplification occurs inside microreactors

Break microreactors and enrich for DNA-positive beads

Bead-amplified sstDNA library

• Secuenciación en nanowells

C Sequencing

7.5 hours

Well diameter: average of 44 µm
 400,000 reads obtained in parallel
 A single cloned amplified sstDNA bead is deposited per well

Quality filtered bases

Amplified sstDNA library beads

454 sequencing explained

Load beads into PicoTiter™Plate

- Cada base se inyecta en forma secuencial en la platina de reacción (PicoTiter Plate), de a una por vez
 - Por ejemplo, 100 veces para un secuenciador 454-FLX
- Si el nucleótido es complementario al molde, se polimeriza en la cadena naciente. La reacción genera pirofosfato, que es transformado en una señal luminosa
- La señal es leida por una cámara
- La intensidad de la señal es proporcional al número de nucleótidos incorporados
 - Si hay 3 'T' en el molde, la luz emitida va a ser ~ 3 veces la de una sola 'T'
- La secuencia se lee a partir de un 'flowgram'

Margulies M, et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature DOI: 10.1038/nature03959

A nanopore is a nanoscale hole. In its devices, Oxford Nanopore passes an ionic current through **nanopores** and measures the changes in current as biological molecules pass through the **nanopore** or near it. The information about the change in current can be used to identify that molecule.

Nanopore: capturing the signal

When sequencing DNA or RNA with nanopores, the *changes in current* caused by the strand of DNA or RNA as it passes through the pore **are recorded**. The processive movement of bases through the pore leads to a *continual change in current, known as the "squiggle"*. MinKNOW software processes the squiggle into reads in real-time, each read corresponding to a single strand of DNA/RNA. These reads are written out into POD5 files. This raw data contains information on not only canonical bases but also base modifications, such as methylation.

La evolución de la química de secuenciación incluye el uso de distintos tipos de nanoporos que van mejorando precisión de lectura, velocidad, throughput, etc.

ATCGGAAAAAAAAATCACGCCACGTCCAAA

R10 = Marzo, 2019,

https://nanoporetech.com/about-us/news/r103-newest-nanopore-high-accuracy-nanopore-sequencing-now-available-store

Oxford Nanopore

La evolución de la química de secuenciación incluye el uso de distintos tipos de nanoporos que van mejorando precisión de lectura, velocidad, throughput, etc.

Fernán Agüero

Nanopore sequencing read accuracy

Timeline of reported MinION read accuracies and Oxford Nanopore Technologies (ONT) technological developments. Nanopore chemistry updates and advances in base-caller software are represented as colored bars. The plotted accuracies are ordered on the basis of the chemistry and base-calling software used, not according to publication date. Based on data from 1 [9]; 2 [10]; 3 [50]; 4 [51]; 5 [33]; 6 [28]; 7 [52]; 8 [53]; 9 [54]; 10 [29]; 11 [31]; 12 [48]; 13 [46]; 14 [55]; 15 [11]; 16 [5]; 17 [13]; 18 [3]. HMM Hidden Markov Model, RNN Recurrent Neural Network

Rang, FJ, Kloosterman, WP & de Ridder, J. *Genome Biol* **19**, 90 (2018). https://doi.org/10.1186/s13059-018-1462-9

Evolution of nanopore sequencing read accuracy

Alignment 1D raw read accuracy

Pacific Biosciences (PacBio)

- The zero-mode waveguide (ZMW) is a nanophotonic confinement structure
- ZMW holes are ~70 nm in diameter and ~100 nm in depth.
- Due to the behavior of light when it travels through a small aperture, the optical field decays exponentially inside the chamber.
- The volume in a ZMW is ~20 zeptoliters (20 X 10⁻²¹ liters)
- Within this volume, the activity of DNA polymerase incorporating a single nucleotide can be readily detected

Zero mode waveguide unit (ZMW)

Single Molecule Sequencing Technologies

El uso de valores de calidad para la asignación de bases a partir de picos en un cromatograma comenzó con el paquete phred/phrap/consed. www.phrap.org

Phred/Phrap/Consed es un paquete de software utilizado para:

- Leer cromatogramas (trace files)
- Asignar valores de calidad a las bases individuales de una secuencia
- Identificar y enmascarar secuencias correspondientes a vector (plásmido) o secuencias repetitivas
- Ensamblar secuencias individuales en contigs
- Visualizar assemblies (contigs)
- Hacer 'sequence finishing' auto dirigido (automatic finishing)

- Genome Res 8 (1998): 175
- Genome Res 8 (1998): 186

Phred

• Phred is a program that performs several tasks:

- Reads trace files compatible with most file formats: SCF (standard chromatogram format), ABI (373/377/3700), ESD (MegaBACE) and LI-COR.
- Calls bases attributes a base for each identified peak with a lower error rate than the standard base calling programs.
- Assigns quality values to the bases a "Phred value" based on an error rate estimation calculated for each individual base.
- Creates output files base calls and quality values are written to output files.

• Alta calidad, sin ambigüedad

Trace files

• Calidad media, algunas ambigüedades

Trace files

• Baja calidad

- la confianza en la asignación de bases es menor

$$q = -10 \times log_{10}(\mathbf{p})$$

Donde:

- **q** = quality value
- **p** = estimated probability error for a base call

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90 %
20	1 in 100	99 %
30	1 in 1000	99.9 %
40	1 in 10000	99.99 %
50	1 in 100000	99.999 %

http://en.wikipedia.org/wiki/Phred_quality_score

$p = 10^{\frac{-q}{10}}$

Donde:

- **q** = quality value
- p = estimated probability error for a base call

Q = quality value	P = estimated probability of error	
0	1	
1	0.794	
2	0.631	
3	0.501	
4	0.398	
10	0.1	
20	0.01	
30	0.001	

BEGIN_SEQUENCE 01EBV10201A02.g	t 24 2221	t 16 8191	t 6 11908
	a 24 2232	g 19 8200	a 6 11921
BEGIN_COMMENT	a 22 2245	t 13 8211	g 6 11927
CHROMAT FILE: EBV10201A02.g	a 27 2261	c 13 8229	t 6 11947
ABI THUMBPRINT:	a 25 2272	σ 4 8241	c 6 11953
PHRED_VERSION: 0.990722.g	g 25 2272	n 4 8253	a 6 11964
CALL_METHOD: phred		c 4 8263	g 6 11981
QUALITY_LEVELS:99	C 12 2302	+ 10.9276	c 4 11994
TRACE ARRAY MIN INDEX: 0	τ 19 2314		n 4 12015
TRACE_ARRAY_MAX_INDEX: 12153	g 12 2324		c 4 12037
TRIM:	g 15 2331	C 12 8301	n 4 12044
CHEM: term	g 19 2346	t 16 8313	n 4 12058
DIE: DIG	g 23 2363	c 12 8329	n 4 12071
END_COMMENT	t 33 2378	c 12 8336	n 4 12085
BEGIN DNA	g 36 2390	c 15 8343	n 4 12098
t 8 5	c 44 2404	t 19 8356	n 4 12111
c 13 17	c 44 2419	c 9 8371	n 4 12124
a 19 26	t 39 2433	g 13 8386	c 4 12144
C 19 32	a 39 2446	g 14 8397	n 4 12151
	a 34 2460	a 7 8417	END DNA
	t 35 2470	g 9 8427	—
	g 34 2482	g 4 8445	END_SEQUENCE

Quality values in FASTA format

Solexa (Illumina) qualities for their version 1.3 pipeline

$$q = -10 \times log_{10}(\frac{p}{1-p}) \text{Odds}$$

Relationship between Q and p using the Sanger (red) and Solexa (black) equations (described above). The vertical dotted line indicates p = 0.05, or equivalently, $Q \approx 13$.

Fernán Agüero

El formato FASTQ guarda información de secuencia y de calidad en el mismo archivo.

@SEQ_ID GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT + !''*(((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65

@ = linea de texto que contiene al identificador
 + = separador (arriba la secuencia, abajo la calidad)

Los valores de calidad están codificados.

Los caracteres "@" y "+" pueden aparecer en esta cadena de caracteres!

Sanger format = Phred Q (0 – 93) se codifica utilizando los códigos ASCII 33 al 126 Solexa 1.0 = Phred Q (-5 – 62) se codifica utilizando ASCII 59 al 126 Solexa 1.3 = Phred Q (0 – 62) se codifica utilizando ASCII 64 al 126 Solexa 1.8 = Sanger format (Phred Q + 33)
ASCII Table

<u>Dec</u>	H	Oct	Char	,	Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html Ch	hr
0	0	000	NUL	(null)	32	20	040	∉#32;	Space	64	40	100	@	0	96	60	140	& #96;	1
1	1	001	SOH	(start of heading)	33	21	041	<i>⊾</i> #33;	1.00	65	41	101	A	A	97	61	141	a	a
2	2	002	STX	(start of text)	34	22	042	∉#34;	"	66	42	102	& # 66;	В	98	62	142	b	b
3	3	003	ETX	(end of text)	35	23	043	∉#35;	#	67	43	103	C	С	99	63	143	c	С
4	4	004	EOT	(end of transmission)	36	24	044	⊊#36;	ę –	68	44	104	D	D	100	64	144	∝#100;	d
5	5	005	ENQ	(enquiry)	37	25	045	∉#37;	÷.	69	45	105	E	Е	101	65	145	e	e
6	6	006	ACK	(acknowledge)	38	26	046	⊊#38;	6	70	46	106	∝#70;	F	102	66	146	6#102;	f
7	7	007	BEL	(bell)	39	27	047	∉#39;	1.00	71	47	107	%#71;	G	103	67	147	g	g
8	8	010	BS	(backspace)	40	28	050	‱#40;	(72	48	110	6,#72;	н	104	68	150	«#104;	h
9	9	011	TAB	(horizontal tab)	41	29	051	∉#41;)	73	49	111	¢#73;	I	105	69	151	i	1
10	A	012	LF	(NL line feed, new line)	42	2 A	052	€#42;	*	74	4A	112	6#74;	J	106	6A	152	j	Ĵ
11	в	013	VT	(vertical tab)	43	2B	053	∉#43;	+	75	4B	113	¢#75;	K	107	6B	153	₀#107;	k
12	С	014	FF	(NP form feed, new page)	44	2C	054	∉#44;	1	76	4C	114	«#76;	L	108	6C	154	l	1
13	D	015	CR	(carriage return)	45	2D	055	<i>‰</i> #45;	- 1	77	4D	115	G#77;	М	109	6D	155	m	m
14	E	016	S0	(shift out)	46	2E	056	∉#46;	•	78	4E	116	∉ #78;	Ν	110	6E	156	n	n
15	F	017	SI	(shift in)	47	2F	057	‰#47;	1	79	4F	117	 ‰#79;	0	111	6F	157	o	0
16	10	020	DLE	(data link escape)	48	30	060	∉#48;	0	80	50	120	∉#80;	Р	112	70	160	p	p
17	11	021	DC1	(device control 1)	49	31	061	‰#49;	1	81	51	121	&# 81;	Q	113	71	161	q	q
18	12	022	DC2	(device control 2)	50	32	062	<i>∝</i> #50;	2	82	52	122	&#82;</td><td>R</td><td>114</td><td>72</td><td>162</td><td>«#114;</td><td>r</td></tr><tr><td>19</td><td>13</td><td>023</td><td>DC3</td><td>(device control 3)</td><td>51</td><td>33</td><td>063</td><td>3</td><td>3</td><td>83</td><td>53</td><td>123</td><td>&#83;</td><td>s</td><td>115</td><td>73</td><td>163</td><td>s</td><td>3</td></tr><tr><td>20</td><td>14</td><td>024</td><td>DC4</td><td>(device control 4)</td><td>52</td><td>34</td><td>064</td><td>4</td><td>4</td><td>84</td><td>54</td><td>124</td><td>&#84;</td><td>Т</td><td>116</td><td>74</td><td>164</td><td>t</td><td>t</td></tr><tr><td>21</td><td>15</td><td>025</td><td>NAK</td><td>(negative acknowledge)</td><td>53</td><td>35</td><td>065</td><td>∉#53;</td><td>5</td><td>85</td><td>55</td><td>125</td><td>∉#85;</td><td>U</td><td>117</td><td>75</td><td>165</td><td>u</td><td>u</td></tr><tr><td>22</td><td>16</td><td>026</td><td>SYN</td><td>(synchronous idle)</td><td>54</td><td>36</td><td>066</td><td>∉54;</td><td>6</td><td>86</td><td>56</td><td>126</td><td>&#86;</td><td>V</td><td>118</td><td>76</td><td>166</td><td>v</td><td>v</td></tr><tr><td>23</td><td>17</td><td>027</td><td>ETB</td><td>(end of trans. block)</td><td>55</td><td>37</td><td>067</td><td>⊊#55;</td><td>7</td><td>87</td><td>57</td><td>127</td><td>∉#87;</td><td>W</td><td>119</td><td>77</td><td>167</td><td><i>⊾#</i>119;</td><td>W</td></tr><tr><td>24</td><td>18</td><td>030</td><td>CAN</td><td>(cancel)</td><td>56</td><td>38</td><td>070</td><td>⊊#56;</td><td>8</td><td>88</td><td>58</td><td>130</td><td>&#88;</td><td>х</td><td>120</td><td>78</td><td>170</td><td>x</td><td>х</td></tr><tr><td>25</td><td>19</td><td>031</td><td>EM</td><td>(end of medium)</td><td>57</td><td>39</td><td>071</td><td>∉#57;</td><td>9</td><td>89</td><td>59</td><td>131</td><td>‰#89;</td><td>Y</td><td>121</td><td>79</td><td>171</td><td>y</td><td>Y</td></tr><tr><td>26</td><td>1A</td><td>032</td><td>SUB</td><td>(substitute)</td><td>58</td><td>ЗA</td><td>072</td><td>⊊#58;</td><td>:</td><td>90</td><td>5A</td><td>132</td><td>≪#90;</td><td>Z</td><td>122</td><td>7A</td><td>172</td><td>z</td><td>Z</td></tr><tr><td>27</td><td>1B</td><td>033</td><td>ESC</td><td>(escape)</td><td>59</td><td>ЗB</td><td>073</td><td>∉59;</td><td>2</td><td>91</td><td>5B</td><td>133</td><td>[</td><td>[</td><td>123</td><td>7B</td><td>173</td><td>{</td><td>- {</td></tr><tr><td>28</td><td>1C</td><td>034</td><td>FS</td><td>(file separator)</td><td>60</td><td>ЗC</td><td>074</td><td>⊊#60;</td><td><</td><td>92</td><td>5C</td><td>134</td><td>∉#92;</td><td>1</td><td>124</td><td>7C</td><td>174</td><td>¢#124;</td><td></td></tr><tr><td>29</td><td>1D</td><td>035</td><td>GS</td><td>(group separator)</td><td>61</td><td>ЗD</td><td>075</td><td>⊊#61;</td><td>=</td><td>93</td><td>5D</td><td>135</td><td>&#93;</td><td>]</td><td>125</td><td>7D</td><td>175</td><td>}</td><td>}</td></tr><tr><td>30</td><td>lE</td><td>036</td><td>RS</td><td>(record separator)</td><td>62</td><td>ЗE</td><td>076</td><td>⊊#62;</td><td>></td><td>94</td><td>5E</td><td>136</td><td>¢#94;</td><td>^</td><td>126</td><td>7E</td><td>176</td><td>~</td><td>~</td></tr><tr><td>31</td><td>lF</td><td>037</td><td>US</td><td>(unit separator)</td><td>63</td><td>ЗF</td><td>077</td><td>?</td><td>2</td><td>95</td><td>5F</td><td>137</td><td>≪#95;</td><td>_</td><td>127</td><td>7F</td><td>177</td><td></td><td>DEL</td></tr></tbody></table>						

	_		
@HWUSI-EAS582_157:6:1:1:1501/1 <			
NCACAGACACACGAACACACAAAGACATGCCCATATGAAGAT \prec	+ "Read	l'' (sequence)	
+			
<pre>%.7786867:778556858746575058873/347777476035 </pre>	🕂 Quali	ty scores (phred-33)	
@HWUSI-EAS582_157:6:1:1:1606/1	Quan		
NCTGGCACCTTGATTTTGGACTTCCCAGCCTCCAGAACTGTGAG			
+	Illumina se	quence identifiers	
%1948988888798988366898888648998788898888588	Sequences from	m the Illumina software use a systematic identifier	
@HWUSI-EAS582_157:6:1:1:453/1			
NCTGCTTGCACCCCTGAAGTCACTGATCACATTTCAGGGTCACC	<pre>@HWUSI-EAS100R:6:73:941:1973#0/1</pre>		
+			
%/868998988888867668888986644788988413488885	HWUSI-	the uplace instrument page	
@HWUSI-EAS582_157:6:1:1:1844/1	EAS100R	the unique instrument name	
NGATTGACATTGGCAAAGAGGACAACTGATTGCAAACTTCACAC	6	flowcell lane	
+	73	tile number within the flowcell lane	
%-7;::::;86499;75574586::635:62687666887879	941	'x'-coordinate of the cluster within the tile	
@HWUSI-EAS582_157:6:1:1:1707/1	1973	'y'-coordinate of the cluster within the tile	
NAGGCTCAGGCGCACGGCCTACATCGTCGCTGTCGGCCAAGGGG +	#0	index number for a multiplexed sample (0 for no indexing)	
	/1	the member of a pair, /1 or /2 (paired-end or	

http://en.wikipedia.org/wiki/FASTQ_format

mate-pair reads only)

Obtuvimos nuestros datos: y ahora qué?

- Analizar la calidad
- Pre-procesar (filtrar, recortar)

Esto permite identificar contaminaciones, y problemas en la construccón de las bibliotecas, y mejorar los datos para los pasos subsiguientes.

- Ensamblar
- Mapear contra referencia

Se analiza la calidad de toda la corrida! Una herramienta muy útil es FASTQC

FastQC

Hay otros: FASTX PRINSEQ TagCleaner

Function	A quality control tool for high throughput sequence data.						
Language	Java						
Requirements	A suitable Java Runtime Environment						
Code Maturity	Stable. Mature code, but feedback is appreciated.						
Code Released	Yes, under GPL v3 or later.						
Initial Contact	Simon Andrews						
Download New							

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

FASTQC

Qué cosas se chequean:

- Calidad
 - Calidad por base
 - Calidad por lectura
- Composición
 - Por base
 - Perfil de composición de GC
- Identificación de contaminantes
 - Secuencias sobre-representadas (k-mers)
 - Niveles de duplicación

FASTQC

FASTQC

Average Quality per read 60000 50000 40000 30000 20000 10000 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Mean Sequence Quality (Phred Score)

Quality score distribution over all sequences

Sequence content across all bases

Fernán Agüero

Qué son los K-meros

Un K-mero es un fragmento de una secuencia, de longitud K dentro de una cadena de bases (una secuencia mas larga de DNA).

Bases	K-mer size	Total possible kmers	
4	1	4	
4	2	16	Por ejemplo: Todos los 2-meros de la
4	3	64	secuencia AATTGGCCG son AA, AT, TT, TG,
4	4	256	GG, GC, CC, CG. Y todos los 3-meros son
4	5	1,024	AAT, ATT, TTG, TGG, GGC, GCC, CCG.
4	6	4,096	El número possible de K-meros se
4	7	16,384	incrementa exponencialmente a medida
4	8	65,536	que aumenta K (4 ^ĸ).
4	9	262,144	
4	10	1,048,576	
4			
4	21	4.4e+12	
4	27	1.8e+16	
4	31	4.6e+18	

Para una determinada secuencia de longitud L, y un tamaño de K-meros K, los posibles k-meros son (L – k) + 1

K = 18

Genome Sizes		Total K-mers of k=18	% diff in genome estimation			
	L	N=(L-K)+1	-			
	100	83	17			
	1000	983	1.7			
	10000	9983	0.17			
	100000	99983	0.017			
	1000000	999983	0.0017			

Cuando secuenciamos un genoma:

- Puede no haber cobertura uniforme
 - Variabilidad técnica: amplificación sesgada de algunas regiones (PCR)
 - Variabilidad biológica: secuencias repetitivas (perfectas o imperfectas)
- Pero además!
 - Nunca secuenciamos 1 solo genoma!
 - Secuenciamos un conjunto de genomas!!! (ADN aislado de una población de células)

Tamaño del genoma (L) Número de k-meros en el genoma (n) Tamaño de k-meros (k) Número de copias del genoma (C)

N = [(L - k) + 1] * C

kmers = secuencias de longitud k

Fernán Agüero

Metodos, algoritmos, técnicas para ensamblar genomas

SEQUENCE ASSEMBLY

Dada una colección de lecturas (*"reads"*) con secuencia de DNA conocida, y una lista de *datos adicionales* sobre sus posicionamientos, encontrar la secuencia de ADN de la molécula original.

Datos adicionales = datos opcionales, auxiliares que pueden ayudar a posicionar las secuencias

Ensamblar secuencias

genome not known

r e a d s overlapping substrings that cover the genome redundantly

assembly what we think

the genome is

Shotgun sequencing

Population genomics in natural microbial communitiesAuthor links open overlay panel. Rachel J. Whitaker, Jillian F. Banfield. doi.org/10.1016/j.tree.2006.07.001

Fernán Agüero

Terminología / Jerga

Assembly

• Un conjunto de *scaffolds*

Scaffold

 Un conjunto de *contigs* ordenados y orientados

Contig

- Un conjunto de *reads*
- Un *layout* que posiciona y ordena todos los *reads* sin dejar gaps
- Un alineamiento múltiple de los reads
- Una secuencia consenso

http://wgs-assembler.sourceforge.net/wiki/index.php/Celera_Assembler_Terminology

Genome sequencing, assembly and annotation: overview

- Distintos tipos de estrategias shotgun
- Uso de la información del shotgun para guiar el assembly

Las **lecturas apareadas** permiten **agrupar y orientar contigs**. El **tamaño de inserto** permite obtener estimaciones de tamaño de **gaps**.

From genomes to pan-genomes

	а					
Hacia la genómica de		Short/long reads				
poblacionesCore genome	b	Contig assembly				De novo sequencing of individual genome
 Variable genome 	С	Scaffold/chromosome assembly	1	_	<u> </u>	
	d	Multiple alignment of genomic regions				Individual A Individual B Individual C
	е	Pan-genome				Individual genome A \longrightarrow B \longrightarrow C \longrightarrow
		Core genom	ne 🔲 Varia	bly distribute	d genome	

Fernán Agüero

Mapear "palabras" en cadenas de texto más largas es un problema conocido: "Exact string matching"

Naïve algorithm

ATAGGAGCACGTTAAGGTT AGGAGC "Exact string matching"

Naïve algorithm

ATAGGACGCACGTTAAGGTT AGGAGC "Exact string matching"

Naïve algorithm

ATAGGACGCACGTTAAGGTT AGGACG

"Exact string matching"

Naïve algorithm

ATAGGACGCACGTTAAGGTT AGGACG GGACGC GACGCA ACGCAC

El problema de ensamblar secuencias

- Fragment assembly problem
- El caso ideal

• Quality metrics

Control de calidad del ensamblado

• Linkage –

- grado de solapamiento (*overlap*) de los fragmentos

-				
_				
_			-	
		•		

- Alta cobertura (coverage)
- Solapamiento promedio pobre
- Solapamiento *mínimo* también pobre

Cobertura de secuenciación

• Cálculos de cobertura

- Queremos secuenciar cada base 5x para tener un nivel de error aceptable
- Qué cobertura promedio necesitamos para asegurar que el 95% de un genoma se secuencie *al menos* 5 veces?
- Se usa la distribución de Poisson
 - Si el número esperado de eventos (ocurrencias) es λ entonces, la probabilidad de observar exactamente κ eventos es

Ejemplo

- Cobertura promedio = 5X
 - Número de veces esperado que va a ser leída una base (λ)
- La probabilidad de una base de haber sido secuenciada 10 veces es
 - Número de veces observado (κ)

$$f(10;5) = \frac{5^{10}e^{-5}}{10!} = 0.018$$

- 0.018 (1.8%) del genoma va a ser leido 10 veces
 - Es decir: 1.8 % del genoma va a tener una cobertura de 10x

Respuesta: Base quality values

$$q = -10 \times log_{10}(\mathbf{p})$$

Donde:

- q = quality value
- **p** = estimated probability error for a base call

Ejemplos:

- q = 20 significa p = 10⁻² (1 error cada 100 bases)
- **q** = 30 significa **p** = 10⁻³ (1 error cada 1000 bases)
- q = 40 significa p = 10⁻⁴ (1 error cada 10000 bases)

Modelos para estimar gaps

• Shotgun sequencing

- Los clones que serán secuenciados se seleccionan al azar
- Genera redundancia
- La cobertura aumenta con el número de secuencias (pero no en forma lineal

Fold Redundancy of Sequencing

Contig formation at lower redundancy of sequencing. The number of contigs that were larger than 2 kb was calculated for each low redundancy simulation. The fold redundancy of each clone was calculated based on the number of bases that had a Phred value >20. The projects that were examined are listed at right. Tomado de Bouck *et al.* (1998) Genome Res 8: 1074.

Modelos para estimar gaps

- Wendl MC and Waterston RH. (2002). Generalized Gap Model for Bacterial Artificial Chromosome Clone Fingerprint Mapping and Shotgun Sequencing. Genome Res 12: 1943.
 - Función de densidad de probabilidades para *i* gaps en N clones

Evolution of probability density function for a hypothetical project (L/G = 0.001, T/L = 0) up to 5× coverage as evaluated by equation 4. Arrows indicate whether the average number of gaps is increasing (\rightarrow) or decreasing (\leftarrow) for each distribution. L = clone length G = project length

Fernán Agüero
Modelos para estimar gaps: closure

• Closure

- En proyectos de secuenciación por shotgun *closure* se refiere al momento donde un aumento de cobertura ya no produce cambios en la disminución del número de gaps (aumento del No. de contigs)
- Probability of closure, p(0,N)

Probability of closure as a function of depth of coverage for various projects: 1. Zhu et al. (1999); 2. Dewar et al. (1998); 3. Fleischmann et al. (1995); 4. McPherson et al. (2001); 5. Adams et al. (2000); 6. Venter et al. (2001). Abbreviations "f.p." and "w.g.s." represent fingerprint mapping and whole genome shotgun sequencing projects, respectively. Cases 1 and 2 were evaluated using equation 4, whereas the remaining cases were determined using equation 9. Tomado de: Wendl MC and Waterston RH (2002). Genome Res 12: 1943

Errores usuales

• Artefactos de clonado

- Quimeras (dos insertos ligados en el mismo vector)
- Errores en la asignación de las bases

Base Call Error

Insertion Error

Deletion Error

• Los fragmentos secuenciados pueden provenir de cualquiera de las 2 hebras del ADN originario

CACGT	\rightarrow	CACGT
ACGT	\rightarrow	-ACGT
ACTACG	\leftarrow	CGTAGT
GTACT	\leftarrow	AGTAC
ACTGA	\rightarrow	ACTGA
CTGA	\rightarrow	CTGA

Sequence assembly models

- Shortest common superstring (SCS)
 - Input: una colección *F* de cadenas de caracteres (fragmentos)
 - Output: la cadena más corta posible S en la cual se cumpla que
 - Por cada $f \in \mathcal{F}$, **S** es una supercadena de f
- Ejemplo 1
 - *F* = { ACT, CTA, AGT }
 - **S** = ACTAGT
- Ejemplo 2
 - Alfabeto = 0,1
 - Todos los 3-mers posibles para este alfabeto
 - *F* = { 000, 001, 010, 011, 100, 101, 110, 111 }
 - **S** = 0001110100

Grafos

- La mayoria de las soluciones de reconstruccion de contigs a partir de fragmentos se resuelven modelando el problema como un *grafo*
- Un grafo es una coleccion de nodos y aristas (o vertices) que conectan los nodos
 - Dirigidos vs no dirigidos
 - Pesados (weighted) vs unweighted
- Vamos a ver mas sobre grafos ...

Grafo de maximo solapamiento

Maximum overlap graph

 El *peso* de cada vertice (u,v) corresponde a la longitud maxima de solapamiento entre un *prefijo* de u y un *sufijo* de v

El camino *dbc* corresponde al alineamiento:

- Cada camino (path) dentro de un grafo, que recorra todos los nodos es un superstring
 - Los vertices con peso = 0 corresponden a alineamientos del tipo

- Vertices con pesos mas altos, producen alineamientos con mayor overlap (y por lo tanto cadenas mas cortas)
- El superstring comun mas corto (SCS) es el camino con mayor peso que cubre todos los nodos
- Problema:
 - Input: un grafo dirigido, con pesos
 - Output: el camino con mayor peso (score) que recorre todos los nodos
 - Suena familiar?

Interval graphs

• Grafos de intervalos

- Resultan de representar intervalos en forma de grafo
- Los intervalos son la proyección 1D del grafo
 - 1 nodo por cada fragmento o intervalo
 - 1 arista entre cada par de intervalos que se *solapan*

Tomado de http://en.wikipedia.org/wiki/Interval_graph

Ensamblando un genoma con grafos

Reconstruir (ensamblar) un genoma circular: ATGGCGTGCA

A partir de una serie de reads:

CGTGCAA

TGCAATG

ATGGCGT

GGCGTGC

CAATGGC

a v v v v v o v o o Una posible solución es representar las secuencias como un grafo de *k-mers*, donde los *edges* indiquen sufijos compartidos entre nodos. Ensamblar es buscar un camino en el grafo que pase por todos los *k-mers* (nodos).

Reads:

CGTGCAA

TGCAATG

ATGGCGT

GGCGTGC

CAATGGC

Para k=3, los k-mers son: CGT, GTG, TGC, GCA, CAA, AAT, ATG, TGG, GGC, GCG

Hamiltonian cycle Visit each vertex once Otra solución posible: representar las secuencias como un grafo de *k-mers*, donde cada *edge e*s un k-mer, y donde los nodos son prefijos y sufijos de cada k-mer. En este caso hay que buscar un camino que pase por todos los *k-mers* (ejes).

Reads:

CGTGCAA

TGCAATG

ATGGCGT

GGCGTGC

CAATGGC

Para k=3, los k-mers son: CGT, GTG, TGC, GCA, CAA, AAT, ATG, TGG, GGC, GCG

Eulerian cycle Visit each edge once

Genome assembly using graphs: overview

- Zhang *et al.* (1994). An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA. Bioinformatics 10: 309–317
 - "An algorithm is described for mapping DNA contigs based on an interval graph (IG) representation ... CPU time is essentially linear with respect to the number of cosmids analyzed"

Bacterial genome assembled using a de Bruijn graph

Assembly complexity

De Bruijn graphs: selection of k

- The choice of k is important to the construction of a de Bruijn graph
- smaller k results in more tangled graphs (more repeats will be glued)
 - Smaller k works better with low coverage regions
- larger k may not adequately detect overlaps, leading to fragmented graphs.
 - Larger k works better with high coverage regions

VelvetOptimiser: script written to optimise the k-mer size and coverage cutoff parameters for Velvet. https://github.com/tseemann/VelvetOptimiser

Multi-size de Bruijn graphs

Spades uses several values for *k* (manually set or inferred automatically) to create a *multisized* graph that minimized tangledness and fragmentation by combining various *k*-mers

SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Anton Bankevich et al Journal of Computational Biology 19, 2012 https://doi.org/10.1089/cmb.2012.0021

Assembly of long error-prone reads using de Bruijn graphs Yu Lin, Jeffrey Yuan, Mikhail Kolmogorov, Max W. Shen, Mark Chaisson, and Pavel A. Pevzner PNAS 2016 <u>https://doi.org/10.1073/pnas.1604560113</u>

SPAdes: multi-sized de Bruijn graphs

Genome = CATCAGATAGGA

Reads (4-mers) = {ACAT, CATC, ATCA, TCAG, CAGA, AGAT, GATA, TAGG, GGAC}

 $\begin{aligned} \text{Missing} &= \{\text{ATAG}, \text{AGGA}, \\ \text{GACA} \end{aligned}$

Theoretical (3-mers) = {all}

Multisized de Bruijn graph. A circular Genome CATCAGATAGGA is covered by a set of Reads consisting of nine 4-mers, {ACAT, CATC, ATCA, TCAG, CAGA, AGAT, GATA, TAGG, GGAC}. Three out of 12 possible 4-mers from Genome are missing from Reads (namely {ATAG,AGGA,GACA}), but all 3-mers from the Genome are present in the Reads. (A) The outside circle shows a separate black edge for each 3-mer from Reads. Dotted red lines indicate vertices that will be glued. The inner circle shows the result of applying some of the glues. (B) The graph DB(Reads, 3) resulting from all the glues is tangled. The three h-paths of length 2 in this graph (shown in blue) correspond to h-reads ATAG, AGGA, and GACA. Thus Reads_{3,4} contains all 4-mers from Genome. (C) The outside circle shows a separate edge for each of the nine 4-mer reads. The next inner circle shows the graph DB(Reads, 4), and the innermost circle represents the Genome. The graph DB(Reads, 4) is fragmented into 3 connected components. (D) The multisized de Bruijn graph DB (Reads, 3, 4). Figure and text from Bankevich *et al.* 2012.

Qué es un Suffix Array?

Consideremos una cadena a indexar: "AGGAGC\$" (\$ = ultima posición)

List of suffixes

Suffix	I
AGGAGC\$	0
GGAGC\$	1
GAGC\$	2
AGC\$	3
GC\$	4
C\$	5
\$	6

Ordered list of suffixes

Suffix I \$ 6 AGC\$ 3 AGGAAGC\$ 0 C\$ 5 GAGC\$ 2 GC\$ 4 GGAGC\$ 1

Suffix Array

i	A[i]
0	6
1	3
2	0
3	5
4	2
5	4
6	1

Cuáles son todos los sufijos que empiezan con AG?

Se acuerdan del "Exact string matching" (Naïve algorithm)?

ATAGGACGCACGTTAAGGTT AGGACG GGACGC GACGCA ACGCAC

Cómo aplicarían Suffix Arrays a este problema?

Suffix Trees/Arrays son la base algorítmica del programa BWA (Burrows-Wheeler Aligner, short read alignment)

Read mapping using hashing algorithm

FIG. 1. The hashing algorithm. (A) The genome is cut into overlapping 3-mers, and their respective positions in the genome are stored. (B) The read is cut into 3-mers. The 3-mers from the reads are compared to 3-mers from the genome using a hashing procedure. (C) Positions for each seed are sorted and compared to the other seeds. (D) Compatible positions are kept.

Journal of Computational Biology. June 2012, 19(6): 796-813. DOI: 10.1089/cmb.2012.0022

Short read mapping/alignment

Fernán Agüero

Contiene un header (opcional) y una sección de alineamientos

@HD	VN:1.0	SO:coordinate					
@SQ	SN:1	LN:249250621	AS:NCBI37	UR:file:/data/local/ref/GATK/hur	man_g1k_v37.fa	sta	
	M5:1b22b98cd	leb4a9304cb5d48	3026a85128				
@SQ	SN:2	LN:243199373	AS:NCBI37	UR:file:/data/local/ref/GATK/hur	man_g1k_v37.fa	sta	
-	M5:a0d9851da	00400dec1098a	9255ac712e				
@SQ	SN:3	LN:198022430	AS:NCBI37	UR:file:/data/local/ref/GATK/hur	nan_g1k_v37.fa	sta	
-	M5:fdfd811849	cc2fadebc929bb	925902e5				
@RG	ID:UM0098:1	PL:ILLUMINA	PU:HWUSI-EAS	S1707-615LHAAXX-L001	LB:80	DT:2010-05-05T20:00:00-0400	SM:SD37

1	1:497:R:-272+13M17D24M	113	1	497	37
	CGGGTCTGA	CCTGAGO	GAGAACTGTGCTC	CGCCTTCAG	0;=
	SM:i:37	AM:i:0	X0:i:1	X1:i:0	XM
1	19:20389:F:275+18M2D19M	99	1	17644	0
	TATGACTGC	ΤΑΑΤΑΑΤΑ	CCTACACATGTTAG	AACCAT	>>>
	XT:A:R	NM:i:0	SM:i:0	AM:i:0	X0.
	MD:Z:37				
1	19:20389:F:275+18M2D19M	147	1	17919	0
	GTAGTACCA	ACTGTAA	GTCCTTATCTTCAT	ACTITGT	;44
	SM:i:0	AM:i:0	X0:i:4	X1:i:0	XM
\$	9:21597+10M2I25M:R:-209	83	1	21678	0
	CACCACATC	ACATATAC	CAAGCCTGGCTG	IGTCTTCT	<;9
	SM:i:0	AM:i:0	X0:i:5	X1:i:0	XM

37	37M	15	100338662	0
0;==-==9;>	>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	> XT:A:U	NM:i:0
XM:i:0	XO:i:0	XG:i:0	MD:Z:37	
0	37M	=	17919	314
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>><<>>4;;>>;<	9 RG:Z:UM009	8:1
X0:i:4	X1:i:0	XM:i:0	XO:i:0	XG:i:0
0	18M2D19M	=	17644	-314
;44999;499	<8<8<<<8<<>	<><7<;<<<>><<	XT:A:R	NM:i:2
XM:i:0	XO:i:1	XG:i:2	MD:Z:18^CA1	9
0	8M2I27M	=	21469	-244
<;9<<5><<	~~~~~~~	<9>><>>9>>>>	⇔ XT:A:R	NM:i:2
XM:i:0	XO:i:1	XG:i:2	MD:Z:35	

Current Read Mapping Tools

Table 2.

Global characteristics of the mapping tools

Tool	Format	Algorithm	Threads	Gaps	Mismatches	
BWA	SAM	BWT	yes	yes	yes	https://aithub.com/bwa-mem2/bwa-mem2
Novoalign	SAM	hash the ref.	yes	yes	yes	
Bowtie	SAM	BWT	yes	no	yes	
SOAP2	perso	BWT	yes	no	at most 2	
BFAST	SAM	hash the ref.	yes	yes	yes	
SSAHA2	SAM	hash the ref.	no	no	yes	
MPscan	perso	suffix tree	no	no	no	
GASSST	SAM	hash the ref.	yes	yes	yes	
PerM	SAM	hash the ref.	no	no	yes	

SAM, Sequence Alignments Map.

Schbath S, Martin V, Zytnicki M, Fayolle J, Loux V, Gibrat JF. Mapping reads on a genomic sequence: an algorithmic overview and a practical comparative analysis. J Comput Biol. 2012 19(6):796-813. doi: 10.1089/cmb.2012.0022. PMID: 22506536; PMCID: PMC3375638.

PacBio Assembly Algorithms

PBJelly PacBioToCA **HGAP & Quiver** & ECTools III III $\Pr(\mathbf{R} \mid T)$ **Quiver Performance Results** Comparison to Reference Genome $\Pr(\mathbf{R} \mid T) = \prod \Pr(R_k \mid T)$ (M. ruber ; 3.1 MB ; SMRT* Cells) Initial Assembly Quiver Consensus QV 43.4 54.5 Accuracy 99.99540% 99.99964% Differences 141 Gap Filling Hybrid/PB-only Error **PB-only Correction &** and Assembly Upgrade Correction Polishing Chin et al (2013) English et al (2012) Koren, Schatz, et al (2012) PLOS One. 7(11): e47768 Nature Methods, 10:563-569 Nature Biotechnology. 30:693–700 < 5x> 50xPacBio Coverage

11

PacBio

ECTools: Error Correction with pre-assembled reads

https://github.com/jgurtowski/ectools

Short Reads -> Assemble Unitigs -> Align & Select - > Error Correct

Can Help us overcome:

- 1. Error Dense Regions Longer sequences have more seeds to match
- 2. Simple Repeats Longer sequences easier to resolve

However, cannot overcome Illumina coverage gaps & other biases

Hybrid assemblies: short + long reads

- Unicycler is designed specifically for *hybrid assembly* (that is, using both short- and longread sequencing data) of small (e.g., bacterial, viral, organellar) genomes.
- Unicycler employs a multi-step process that utilizes a number of software tools

Ultimo hito: estudio de estructura cromosómica

Hi-C: proximity ligation + secuenciación

- Estudio *no sesgado* a escala genómica de interacciones a nivel de la cromatina
- Revela arquitectura cromosómica a diferentes niveles
 - Territorios cromosómicos
 - Regiones donde la cromatina es abierta vs cerrada
 - Estructura de la cromatina a escala de megabases (millones de bases)

Erez Lieberman-Aiden E, et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science (326), 289-293, doi: 10.1126/science.1181369 (2009). van Berkum, NL, et al. Hi-C: A Method to Study the Three-dimensional Architecture of Genomes. J. Vis. Exp. (39), e1869, doi:10.3791/1869 (2010).

Hi-C: proximity ligation + sequencing

Hi-C revela interacciones intercromosómicas + intracromosómicas

Ayudan a mejorar ensambles: corrijen mala asignación de contigs a scaffolds o cromosomas), además de identificar inversions y translocaciones, en estudios comparativos.

Erez Lieberman-Aiden E, et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science (326), 289-293, doi: 10.1126/science.1181369 (2009).

Assessment / Validation

ASSEMBLY VALIDATION

N50

- Calidad del ensamble en términos de *contiguidad*
- **N50** es similar a una mediana o media de longitudes de contigs
- Es la longitud del contig más corto a partir del cual el 50% de las bases se encuentran repartidas entre él mismo y otros contigs más cortos
- Ej si tenemos 7 contigs con longitudes
 - 1, 1, 3, 5, 8, 12, 20
- El N50 es 12 porque:
 - 1 + 1 + 3 + 5 + 8 + 12 + 20 = 50 (la longitud acumulada de todo el ensamble)
 - 50/2 = 25 (la mitad de la longitud sumada de todo el ensamble)
 - Y si empezamos desde el contig más corto y vamos sumando hasta conseguir llegar a una longitud acumulada >=25 ...
 - 1 + 1 + 3 + 5 + 8 + 12 = 30
 - O sea, el sexto contig (de longitud 12) es el primero en el que alcanzamos o pasamos la mitad de la longitud del ensamble

L50

- El *número mínimo de contigs* cuya longitud suma 50% del tamaño del ensamble
- Ej si tenemos 7 contigs con longitudes
 - 1, 1, 3, 5, 8, 12, 20
 - El L50 es 6 porque seis es el número de contigs con los que alcanzamos o pasamos la mitad de la longitud del ensamble

N90

• Similar al N50 (pero pide 90% de las bases)

NG50

- Similar al N50 pero en lugar de referirse a la longitud total del ensamble, se refiere a la longitud total del *genoma*
- Util porque el N50 no permite comparar entre ensambles de diferentes tamaños (pero NG50 si)

Y hay más métricas Ver https://en.wikipedia.org/wiki/N50, L50, and related statistics

Una métrica es solamente eso. Una herramienta. Usarla con cuidado!

PROBLEMAS con el N50!

Si intentamos optimizar el N50 podemos forzar (recompensar) malos ensambles

- Un assembler agresivo puede excederse al unir contigs simplemente buscando incrementar el N50
 - Ej 1, 1, 3, 5, 8, 12, 20 (contigs del ejemplo anterior, N50 = 12)
 - 1, 1, 3, 5, 8, 20, 20 (aggressive join de los contigs de longitudes 8 y 12)
 - Ahora el N50 es 20

Validación de los ensambles

Auto-consistencia

- Mapear de nuevo reads contra contigs
- Chequear errores o inconsistencias

Segunda opinion / validación externa

- Usar dos métodos de secuenciación complementarios
 - Illumina + PacBio
 - Illumina + Nanopore
- Validar regiones por PCR
 - Util para validar o para resolver regiones dificiles
- Hi-C (chromatin contact maps)
 - Hi-C, 3-C Seq, Capture-C
 - Familia de métodos para caracterizar interacciones a nivel de cromatina
 - Mapas de regiones del genoma que están cercanas entre si
- Mapa óptico global del genoma
 - <u>https://en.wikipedia.org/wiki/Optical_mapping</u>
- J. Setubal and J. Meidanis, Introduction to Computational Molecular Biology, PWS Publishing Company, Boston, 1997
- D. Gusfield, Algorithms on Strings, Trees and Sequences, Cambridge University Press, 1997.
- Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome assembly. Nature Biotechnol 29: 987, 2011.
- Li H, Holmer N. A survey of sequence alignment algorithms for nextgeneration sequencing. Briefings in Bioinformatics 11: 473, 2010.
- Riberiro FJ et al. Finished bacterial genomes from shotgun sequence data. Genome Res 22: 2270, 2012
- Nagarajan, N., & Pop, M. (2013). Sequence assembly demystified. Nature Reviews Genetics, 14(3), 157–167. doi:10.1038/nrg3367
- Rice, E. S., & Green, R. E. (2018). New Approaches for Genome Assembly and Scaffolding. Annual Review of Animal Biosciences, 7(1). doi:10.1146/annurev-animal-020518-115344